Что DeepSeek и Qwen2.5 могут дать разработчикам, чего нет в ChatGPT?

Последние дни только и слышно: DeepSeek, Qwen2.5, китайские модели, OpenAI напрягся.

Сначала не хотел ничего писать, тем более просто репостить новости – вы и так это уже слышали из каждого чайника.

Но потом решил копнуть глубже. Посмотрел их сайты, документацию, чаты, и вот что порадовало больше всего:

👉 Эти модели можно развернуть локально.

Об этом почти не говорят – все обсуждают только количество токенов, сравнения с GPT-4 и прочие пузомерки. А вот что реально даёт возможность локального развёртывания – вопрос интересный.

🛠 Развёртывание: опыт из первых рук Запустить DeepSeek или Qwen2.5 – это не так просто, как ChatGPT, но и не rocket science. Арендовал сервер на несколько дней и развернул DeepSeek на конфигурации: 1× NVIDIA RTX 3090 (24GB VRAM), 128GB RAM и AMD Ryzen 9 5950X.

📊 Результат? 💾 Модель запустилась без проблем ⏳ Первый ответ – 15 секунд, сложные запросы обрабатывались по 40-60 секунд. 🔥 GPU загружен на 85%, VRAM использовано почти полностью. ⚡️ Процессор загружен на 40-50%, RAM занято около 70GB.

В боевом режиме можно ускорить работу: 📌 Сжатие модели – снижает потребление памяти и ускоряет ответы.

📌 Квантование – уменьшает нагрузку без значимой потери качества.

📌 Автоматический бэчинг – ускоряет работу при множественных запросах. Open-source LLM становятся всё доступнее, но для полноценной работы потребуется более мощное железо. 🚀

🔍 Что это даёт нам, обычным разработчикам? ✅ Локальная LLM без зависимостей Теперь не нужно залипать на API OpenAI, платить за каждый токен и бояться, что доступ заблокируют по политическим или другим причинам.

✅ Полная кастомизация Можно дообучать, адаптировать, менять под свои задачи. OpenAI такой возможности не даёт.

✅ Безопасность данных Для заказных проектов, где важно не передавать данные во внешние API, локальная LLM – это реальный выход.

✅ Снижение затрат в долгосроке Если у вас огромные нагрузки и много запросов, развёртывание своей модели может оказаться дешевле, чем платить за API.

Но есть нюансы:Развёртывание = затраты Нужны серьёзные мощности. Запустить можно хоть на ноуте, но для продакшена это пока дорого.

OpenAI всё ещё удобнее GPT-4 просто работает, а тут нужна оптимизация, поддержка, DevOps.

Модели пока не идеальны DeepSeek и Qwen2.5 догоняют GPT-4, но ещё не факт, что стабильно заменят его во всех задачах.

📌 Что в итоге? Open-source LLM наконец-то становятся реальной альтернативой. Да, пока не для всех. Но если вам нужна LLM-модель работающая локально, теперь это можно сделать без OpenAI.

Что DeepSeek и Qwen2.5 могут дать разработчикам, чего нет в ChatGPT?
Последние дни только и слышно: DeepSeek, Qwen2.5, китайские модели, OpenAI напрягся | Сетка — новая социальная сеть от hh.ru Что DeepSeek и Qwen2.5 могут дать разработчикам, чего нет в ChatGPT?
Последние дни только и слышно: DeepSeek, Qwen2.5, китайские модели, OpenAI напрягся | Сетка — новая социальная сеть от hh.ru
repost

312

input message

напишите коммент

· 07.02

Круто! Спасибо за информацию

ответить

· 07.02

Нормальная графика нужна?

ответить

еще контент автора

еще контент автора

войдите, чтобы увидеть

и подписаться на интересных профи

в приложении больше возможностей

пока в веб-версии есть не всё — мы вовсю работаем над ней

сетка — cоциальная сеть для нетворкинга от hh.ru

пересекайтесь с теми, кто повлияет на ваш профессиональный путь